

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International GCSE Mathematics A (4MAO/4HR) Paper 4HR

www.mymathscloud.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG039424
All the material in this publication is copyright
© Pearson Education Ltd 2014

www.mymathscloud.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o awrt answers which round to
- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

M. M. Mains Cloud Con

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct. It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

· Parts of questions

Unless specifically allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from Questions 14 and 16 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

NB: All ranges for correct answers on the mark scheme are inclusive.

Question	Working	Answer	Mark	Notes
1	eg. $-22 = 5 \times p - 4 \times -5$ or $5p = -22 + 4 \times -5$			M1 for correct substitution (must be into a
				correct equation)
	eg. $-22 = 5p + 20$ or			M1 for correct simplification
	$5p = -22 - 20$ or $p = \frac{-22 - 20}{5}$			(minimum of $-4 \times -5 = +20$)
		-8.4 oe	2	A1 (accept $-\frac{42}{5}$ or $-8\frac{2}{5}$ oe)
				Total 3 marks

Question	Working	Answer	Mark	Notes
2	$3.45 \text{ or } 3\frac{27}{60}$			M1 for correctly converting '3h 27m' into a
	$\frac{3.43 \text{ or } 3{60}}{60}$			decimal (eg. 3.45)
				For '3h 27m' there must be some indication that
				this is the elapsed time from 20:07 to 23:34
	"3 $\frac{27}{60}$ "×224 or "3.45" × 224			M1 (independent) allow
	60			'3h 27m' × 224 or 3.27 × 224
				For '3h 27m' there must be some indication that
				this is the elapsed time from 20:07 to 23:34
				NB. 224 × 20 07 gets M0
		772.8	3	A1 accept 773
				Total 3 marks

Question	Working	Answer	Mark	Notes
3 (a)				M1 for $3n + k$ (k may be zero) oe
		3n + 1 oe	2	A1 need not be simplified eg. $4 + 3(n - 1)$
				NB: $n = 3n + 1$ gains M1 A0
(b)	$3n+1=88 \text{ or } (88-1) \div 3$			M1 ft "3 <i>n</i> + 1" =88
				NB. Only ft if their expression is of the form $an + b$
				where $a > 1$ and $b \neq 0$
		29	2	A1 ft NB. unrounded answer must be an integer
				Total 4 marks

Question	Working	Answer	Mark	Notes
4 (a)		Rotation, 90°,	3	B1 Rotate or rotated
		anticlockwise, centre O		B1 90° (anticlockwise) or -270° or 270° clockwise
				B1 (centre) O or $(0,0)$ or origin
				(do not accept $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ but do not count as an additional transformation)
				NB if more than one transformation then 0 marks
(b)		triangle at (6,1) (7,1)	1	B1 cao
		(7,3)		
				Total 4 marks

Question	Working	Answer	Mark	Notes
5	$\pi \times 3^2 (= 9\pi) (= 28.27)$			M1 rounded or truncated to 3 or more sig figs
	$20 \times 12 \ (= 240)$			M1
	$240'' - 2 \times 28.27$			M1 dep on M2
		183	4	A1 for answer in range 183 – 184
				Total 4 marks

Question	Working	Answer	Mark	Notes
6	Working with all 12 boxes 12 × 15 (=180) or 12 × 12 (=144)			M1 for correct total cost or correct total number of drinks (either may appear as part of another calculation)
	$12 \times 12 \times \frac{3}{4} \times 1.5$ oe (=162)			M1 for revenue from all full price drinks sold
	$12 \times 15 \times 1.15$ oe (=207) or 180×0.15 oe (=27)			M1 for total revenue or total profit
	$\frac{"207" - "162"}{36} \text{ or } \frac{45}{36} \text{ or } \frac{"27" + ("180" - "162")}{36}$			M1 dep on M3
		1.25	5	A1 cao
				Total 5 marks
	Alternative – working with one box $15 \div 12 \ (=1.25) \ \text{or} \ 12 \times \frac{3}{4} \ (=9)$			M1 for price of 1 drink or number of full price drinks
	$12 \times \frac{3}{4} \times 1.5$ oe (=13.5)			M1 for revenue from all full price drinks sold
	15×1.15 (=17.25)			M1 for total revenue from one box
	$\frac{"17.25"-"13.5"}{3}$ or $\frac{3.75}{3}$			M1 dep on M3
		1.25	5	A1 cao
				Total 5 marks

Question	Working	Answer	Mark	Notes
7 (a)		0.9 oe	1	B1 accept 90% or $\frac{9}{10}$ oe
(b)	50×0.1 oe			M1 50×0.1
		5	2	A1 cao
				Total 3 marks

Question	Working	Answer	Mark	Notes
8 (a)	$252 = 2 \times 126 = 2 \times 2 \times 63 = 2 \times 2 \times 3 \times 21$			M1 for a process that isolates at least 2 correct prime
				factors e.g. $252 = 2 \times 126$, $126 = 3 \times 42$ or a factor tree
				with 2 primes from 2, 3 or 7 identified or repeated
				division
		2×2×3×3×7	2	A1 for $2\times2\times3\times3\times7$ oe with correct prime factors
(b)	22 22 7 24 2 5	2\2\3\3\1		
(0)	$2^2 \times 3^2 \times 7 \times 2^4 \times 3 \times 5$			M1 " $2^2 \times 3^2 \times 7$ " $\times 2^4 \times 3 \times 5$ or a fully correct factor tree
				or fully correct repeated division
		$2^6 \times 3^3 \times 5 \times 7$	2	A1 cao accept in any order
				Total 4 marks

Question	Working	Answer	Mark	Notes
9	x + 24 = 4x - 30			M1 for forming a correct equation in <i>x</i>
		x = 18		A1 cao
	x + 2y + x + 24 = 180 or x + 2y + 4x - 30 = 180 or x + 2y + 4x - 30 + x + 24 + x + 2y = 360			M1 for forming a correct equation in x and y or a correct equation in y (NB. Their found value of x (which may not be correct) may be substituted)
		y = 60	4	A1 cao
				Total 4 marks

Question	Working	Answer	Mark	Notes
10 (a)	$2.1 \div (1 + 2 + 3) (= 0.35)$ or $2.1 \div 6$			M1 allow $2.1 \div (1 + 2 + 3) \times 3 (=1.05)$ for
	$2.1 \div (1 + 2 + 3) \times 2$ or $2.1 \div 6 \times 2$ oe			the method mark
		0.7	2	A1 (accept 0.70)
(b)	eg. $6 \div 3 = 2$ and 2×0.75 or $\frac{0.75}{3} \times 6$ oe			M1 for a complete method
		1.5	2	A1 cao
				Total 4 marks

Question	Working	Answer	Mark	Notes
11(a)	$7 + 7 + 8 + d = 4 \times 8$ or $7, 7, 8, (x)$ or $4 \times 8 (=32)$			M1
		10	2	A1 (accept 7, 7, 8, 10 on answer line)
(b)	$\frac{(2\times"7"-3)+(2\times"7"-3)+(2\times"8"-3)+(2\times"10"-3)}{4}$			M1 ft for a complete method using candidate's 4 numbers from (a)
	or			or
	$\frac{2\times32-12}{4}$			$\frac{2a-3+2b-3+2c-3+2d-3}{4}$ oe
	or			
	$2 \times 8 - 3$			
		13	2	A1 cao
				Total 4 marks

Question	Working	Answer	Mark	Notes
12 (a)				M1 $(2t \pm 1)(t \pm 3)$ or $(2t \pm 3)(t \pm 1)$
				NB. Accept 1t in place of t
		(2t-1)(t-3)	2	A1 cao
(b)	$bx^2 = a - y \mathbf{or} - bx^2 = y - a$			M1 for isolating bx^2 (or $-bx^2$)
	$x^{2} = \frac{a - y}{b}$ or $x^{2} = \frac{y - a}{-b}$ or $x^{2} = -\frac{y - a}{b}$			M1 for isolating x^2
		$x = \pm \sqrt{\frac{a - y}{b}}$	3	A1 or $x = \pm \sqrt{\frac{y-a}{-b}}$ or $x = \pm \sqrt{-\frac{y-a}{b}}$
				(condone omission of \pm)
				Total 5 marks

Question	Working	Answer	Mark	Notes
13 (a)	14 16 17 18 20 21 22 23 23 24 24			M1 arrange in order or One of 21(modian), 17(LO), 23(LO) identified
				One of 21(median), 17(LQ), 23(UQ) identified
	(14 16 17 18 20 <u>21</u> 22 23 23 24 24)			M1 Identify any two of 21, 17 and 23
	(14 16 <u>17</u> 18 20) and			
	(22 23 23 24 24)			
	23 - 17			
		6	3	A1 cao
(b)		Carmelo and	2	B1 ft from (a) Carmelo - he has a lower IQR oe
		reason using IQR		(IQR must be part of the statement)
				Total 5 marks

Question	Working	Answer	Mark	Notes
14 (a)	$7.8 \times 10^8 \times 1000$ or 7.8×10^{11} oe or $8 \div 1000$ or 0.008			M1 for correct conversion from m to km or from km to m
	$7.8 \times 10^8 \times 1000 \div 8 \text{ or } 7.8 \times 10^8 \div 0.008$			M1 (indep) award for digits 975 (eg. an answer of 9.75×10^7 gets M0 M1 A0)
		9.75×10^{10}	3	A1 cao
(b)	$\frac{1.95 \times 10^{10} \text{ km}}{"9.75 \times 10^{10} "} (=0.2 \text{(km)}) \text{ or } \frac{1.95 \times 10^{13}}{"9.75 \times 10^{10} "} (=200 \text{(m)}) \text{ or } \frac{1.95 \times 10^{10}}{7.8 \times 10^{8}} \times 8 \ (=200 \text{(m)}) \text{ or } \frac{1.95 \times 10^{13}}{7.8 \times 10^{11}} \times 8 \ (=200 \text{(m)})$			B1 cao M1 ft from (a) also award for $ \frac{1.9 \times 10^{10}}{"9.75 \times 10^{10}"} \text{ or } \frac{1.9 \times 10^{13}}{"9.75 \times 10^{10}"} $ or $ \frac{1.9 \times 10^{10}}{7.8 \times 10^{8}} \times 8 \text{ or } \frac{1.9 \times 10^{13}}{7.8 \times 10^{11}} \times 8 $
	NB: 1.95 may be the candidate's upper bound	200	3	A1 cao must be from correct figures used in a correct calculation
				Total 6 marks

Question	Working	Answer	Mark	Notes
15 (a)		$\frac{2}{7}$ then two pairs of branches with $\frac{3}{5}$, $\frac{2}{5}$ on the W	2	M1 $\frac{2}{7}$ on lower LH branch OR
		and R branches respectively		two additional pairs branches labelled with white and red
		fully correct tree diagram		A1 for fully correct tree diagram with all probabilities and labels
				NB: Accept 0.28571 rounded or truncated to 3 or more sig figs for $\frac{2}{7}$
(b)	\frac{5}{7} \times \frac{3}{5} "			M1 ft from their tree diagram
		$\frac{15}{35}$	2	A1 oe eg. $\frac{3}{7}$ or 0.428571 rounded or truncated to 3 or more sig figs Accept 0.43 if working shown
(c)	$\frac{5}{7}$ ×" $\frac{2}{5}$ " or $\frac{2}{7}$ ×" $\frac{3}{5}$ "		3	M1 for a correct product only ft probabilities < 1 M2 for $1 - \frac{15}{35} - \frac{2}{7} \times \frac{2}{5}$
	$\frac{5}{7}$ ×" $\frac{2}{5}$ " + $\frac{2}{7}$ ×" $\frac{3}{5}$ "			M1 for full method
		16		A1 oe accept decimal answer 0.457142
		$\overline{35}$		rounded or truncated to 3 or more sig figs
				Accept 0.46 if working shown Total 7 marks

Que	estion	Working	Answer	Mark	Notes
16	(a)	Eg. Area = $(4x-3)(x+1) + [3x-(x+1)] \times 4$ OR			M1 for a complete correct expression for area of hexagon
		Area = $4 \times 3x + (x+1)(4x-3-4)$ OR			
		Area = $(4x-3) \times 3x - (4x-3-4)(3x-(x+1))$			
					A1 for all brackets correctly expanded
			Answer given	3	A1 for convincing progression to given equation
	(b)	$\frac{-9\pm\sqrt{9^2-4\times4\times(-47)}}{2\times4}$			M1 for correct substitution; condone one sign error; brackets not necessary; condone + instead of ± in formula There may be partial evaluation – if so, this must be correct
		$\sqrt{833}$ or $\sqrt{81+752}$ or $7\sqrt{17}$ or 28.8			M1 (independent) for correct simplification of discriminant (if evaluated, at least 3sf rounded or truncated)
			2.48, -4.73	3	A1 awrt 2.48 and -4.73 NB. If negative solution is discarded (or omitted at any stage) then full marks can still be obtained Award 3 marks if first M1 scored and answer correct
	(c)	3 ×"2.48" (=7.44) or 4 × "2.48" – 3 (=6.93)			M1
		,	7.45	2	A1 for 7.44 - 7.45

16b	Alternative		M1	$for (n+9)^2 oc$
	$x^2 + \frac{9}{4}x - \frac{47}{4} = 0$			for $(x+\frac{9}{8})^2$ oe
	$(x + \frac{9}{8})^2 - \frac{81}{64} - \frac{47}{4} = 0$			
	$(x + \frac{9}{8}) = \pm \sqrt{\frac{833}{64}}$		M1	for $(x+\frac{9}{8}) = \pm \sqrt{\frac{833}{64}}$ oe
		2.48, -4.73	3	A1 awrt 2.48 and -4.73 NB. If negative solution is discarded (or omitted) then full marks can still be obtained Award 3 marks if first M1 scored and answer correct
				Total 8 marks

Question	Working	Answer	Mark	Notes
17 (a)		$4x^2y$	2	B2 (B1 for $ax^n y^m$ with two of $a = 4$; $n = 2$; $m = 1$)
(b)	2(x-2)(x+2) or $(2x-4)(x+2)$ or $(x-2)(2x+4)$			M1 for numerator factorised
	4x(x-2) or $2x(2x-4)$			M1 for denominator factorised
		$\frac{x+2}{2x}$	3	A1 accept $\frac{1}{2} + \frac{1}{x}$
	Alternative to (b): $\frac{2x^2 - 8}{4x^2 - 8x} = \frac{x^2 - 4}{2x^2 - 4x} = \frac{(x - 2)(x + 2)}{2x(x - 2)}$	$\frac{x+2}{2x}$	3	In order to use this mark scheme, correct simplification of the original fraction must be seen M1 $(x-2)(x+2)$ M1 $2x(x-2)$ A1 accept $\frac{1}{2} + \frac{1}{x}$
				Total 5 marks

Question	Working	Answer	Mark	Notes
18 (a)	∠AOC= 90 - 36	54	2	B1 cao
		Angle between		B1 for Angle between tangent and radius is 90°
		tangent and radius		(accept right-angle or perpendicular)
		is <u>90°</u>		
(b)	<u>Using angle CGF = angle FGE + angle CGE</u>			
	$\angle FGE = 90 - 34 \ (=56)$			M1 may be on diagram
	$\angle CGE = "54" \div 2 (=27) \text{ or }$			M1 may be on diagram
	$\frac{180 - (180 - "54")}{2} \ (=27)$			
		83	3	A1 cao
	Alternative: Using angles in a cyclic quadrilateral = 180° Angle $CGF = 180$ – (angle CEO + angle FEG)			
	Angle $CEO = (180 - "54") \div 2 (=63)$ and angle $FEG = 180 - (180 - 70) - 36) (=34)$			M1 may be on diagram
	Angle $CGF = 180 - ("34" + "63")$			M1 dep on previous M1
		83	3	A1 cao
				Total 5 marks

Question	Working	Answer	Mark	Notes	
19	$(BC^2 =)3.8^2 + 6.4^2 - 2 \times 3.8 \times 6.4 \cos 120^\circ$			M1 correct use of Cosine rule to	Award M2 A1 for
	(=79.72)			find BC	$BC = 8.9 - 8.93 \text{ or } \sqrt{79.72}$
	$(BC^2 =) 14.44 + 40.96 + 24.32 (=79.72)$			M1 correct order of operations	
				A1 for $BC = 8.9 - 8.93$ or	or $\sqrt{\frac{1993}{25}}$ oe
				$\sqrt{79.72}$ or $\sqrt{\frac{1993}{25}}$ oe	γ 23
	$\sin C = \sin 120$			M1 correct use of Sine rule or	Award M2 for
	$\frac{\sin C}{6.4} = \frac{\sin 120}{"8.92}$ or			Cosine rule to find angle C	C = 38 - 38.5
	$6.4^2 = 3.8^2 + \text{``8.92''}^2 - 2 \times 3.8 \times \text{``8.92''} \times \cos C$				
	$\sin C = \frac{6.4 \times 0.866}{"8.92} (= 0.62)$ or			M1 correct rearrangement	Award M2 for $B = 21.5 - 22$
	0.72				B = 21.5 - 22 and
	$\cos C = \frac{3.8^2 + "8.92"^2 - 6.4^2}{2 \times 3.8 \times "8.92"} (=0.78)$				C = 180 - 120 - B
	C = 38 - 38.5				
		068	6	A1 (0)68 - (0)68.4	
	<u>Alternative</u>			M1 uses triangle CAD and $\angle CAD =$	$=60^{\circ} \text{ or } ACD = 30^{\circ}$
	CD is the perpendicular from C to BA produced.			CD may not be drawn in but can	
	$\angle CAD = 60^{\circ} \text{ or } ACD = 30^{\circ}$, and the second	P
	$AD = 3.8 \cos 60^{\circ} \text{ or } 3.8 \sin 30 \ (= 1.9)$			M1 for correct method to find horiz	contal length
	BD = 6.4 + 1.9 (= 8.3)			A1 for $BD = 8.3$	
	$CD = 3.8\sin 60 \text{ or } 3.8\cos 30 \ (=3.29)$			M1	
	$\tan BCD = \frac{8.3}{3.8\sin 60} \text{ oe}$			M1	
		068		A1 (0)68 – (0)68.4	
					Total 6 marks

Question	Working	Answer	Mark	Notes
20	(Slant Height =) $\sqrt{(5a)^2 + (12a)^2}$ (= 13a)			M1 correct use of Pythagoras – condone missing brackets
	(total surface area =) $\pi \times (5a)^2 + \pi \times 5a \times \text{``13}a\text{''}$ oe or $\pi \times (5a)^2 + \pi \times 5a \times \sqrt{(5a)^2 + (12a)^2}$ (=90 πa^2)			M1 dep on first M1 – must have either $25a^2$ or $(5a)^2$
	eg. $90 \pi a^2 = 360\pi$ oe or $\pi \times (5a)^2 + \pi \times 5a \times "13a" = 360\pi$ oe			M1 dep on first M1 for equation formed (need not be simplified) – must have either $25a^2$ or $(5a)^2$
				A1 a = 2
	$V = \frac{1}{3} \times \pi \times (5 \times "2")^2 \times 12 \times "2" \ (=100\pi a^3) \text{ or}$			M1 dep on first M1
	$V = \frac{1}{3} \times \pi \times 10^{2} \times 24 \text{ oe or}$ $k = \frac{1}{3} \times (5 \times 2)^{2} \times 12 \times 2$			NB. For the award of this mark, brackets must be present or the value for r^2 evaluated correctly for the candidate's value of a
	-	800	6	A1 cao
				Total 6 marks

Que	estion	Working	Answer	Mark	Notes
21	(a)	LHS $a^2c^2 + a^2 + c^2 + 1$			M1 for correct expansion of LHS
		RHS $a^2c^2 - 2ac + 1 + a^2 + 2ac + c^2$			M1 for correct expansion of RHS
			Shown	3	A1 for convincing progression and conclusion
		Alternative (i):			M1 for correct expansion of LHS
		LHS $a^2c^2 + a^2 + c^2 + 1$			
		$a^2c^2 - 2ac + 1 + a^2 + 2ac + c^2$			M1 for introduction of $+2ac$ and $-2ac$
			Shown	3	A1 for convincing progression and conclusion
		Alternative (ii)			M1 for correct expansion of RHS
		RHS $a^2c^2 - 2ac + 1 + a^2 + 2ac + c^2$			
		$a^{2}c^{2} - 2ac + 1 + a^{2} + 2ac + c^{2} = a^{2}c^{2} + a^{2} + c^{2} + 1$			M1 for correct simplification and convincing
		$=a^2(c^2+1)+(c^2+1)$			factorisation
			Shown	3	A1 for convincing progression and conclusion
	(b)	65×10001			M1 for 65×10001
		a=8, c=100			
		$ac - 1 = 8 \times 100 - 1$			
		a + c = 8 + 100			
					A1 $a = 8$, $c = 100$ or $a = 100$ and $c = 8$ or
			1002 5002		108 and 799
			$108^2, 799^2$	3	A1 108 ² , 799 ² or 11664 and 638401
					Total 6 marks

TOTAL FOR PAPER: 100 MARKS

www.mymathscloud.com